FLAGSHIP PROJECT

Pyrolytic upgrading of methane to ethylene, aromatics and carbon materials

Methane has tremendous potential as a chemical feedstock. It is an abundant and relatively cheap carbon source with a lower negative environmental footprint than other fossil resources, such as crude oil and coals. Aiming on this, we are now trying to convert methane, CH4, into ethylene, in both an energy- and atom-efficient way.

Methane instead of crude oil

Currently, carbon materials such as plastics are being made from crude oil. Crude oil consists of long hydrocarbon molecules, which are cracked into shorter hydrocarbon building blocks. Methane, however, is a hydrocarbon that consists of just one carbon atom. Using methane as a base chemical would save much energy that is currently needed in the cracking process.

Full control over the products

However, for methane, it is challenging to activate C-H bonds in such a way that there is full control over the products. Managing these harsh process conditions is crucial for success and therefore one of our focus points. Furthermore, we want to develop improved catalysts and to increase our fundamental understanding of active sites and related reaction mechanisms, by using advanced characterization methods.

Significant step in energy transition

Despite the clear potential of methane, efficient and industrially applicable direct methane-to-products conversions are not yet available for the chemical industry. The project will specifically explore the activation and chemistry of methane as a first and significant step in energy transition efforts, preceding work on other small and stable molecules, notably CO2 and N2.

Suitable solid catalysts

Within this multilateral project, we are exploring suitable solid catalysts for the pyrolytic conversion of methane into olefins, aromatics and structured carbons, all valuable chemical base materials. Not only do we wish to design new or improved catalyst materials, we also seek to increase our fundamental knowledge. For example knowledge on active catalytic sites and reaction mechanisms, on the underlying principles by which activity can be steered, on the product selectivity and catalyst stability and on effective catalyst-reactor design combinations.

Evaluate performance in real time

To this purpose, we will develop new characterization tools that allow us to evaluate the catalytic performance in real time. This will provide understanding of the activation mechanisms of methane and will allow us to follow the chemical conversion chemistry under severe reaction conditions, including its time- and composition dependence. The initial structure and composition of the newly developed catalyst will be related to (time-dependent) actual structure, surface composition and performance under reaction conditions.


Hans Kuipers

Professor of Multi-scale modelling of multiphase flows
Eindhoven University of Technology

Adrie Huesman

Principal External technology - Collaboration advisor
Shell

Emiel Hensen

Professor of Molecular catalysis
Eindhoven University of Technology

Alfons van Blaaderen

Professor of Soft condensed matter
Utrecht University

Krijn de Jong

Professor of Inorganic chemistry and catalysis
Utrecht University

Petra de Jongh

Professor of Inorganic nanomaterials
Utrecht University

Bert Weckhuysen

Professor of Inorganic chemistry and catalysis
Utrecht University